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Abstract-Protein sequence motifs information is essential for the analysis of biologically significant 

regions. Discovering sequence motifs is a key task to realize the connection of sequences with their 

structures. Protein sequence motifs have the potential to determine the function and activities of the 

proteins.  Many algorithms or techniques are used to determine motifs which require a predefined fixed 

window size. Our input dataset is extremely large as a result, an efficient technique is demanded. So we 

apply three different granular computing models to find protein motif information which transcend 

protein family boundaries. The constructed segments from 3000 protein sequences are divided into 

granules using Rough K-Means and then K-Means has been applied on each granule. The highly 

structured clusters are further considered to find motif patterns. This approach is compared with 

Adaptive Fuzzy Granular model. The proposed Rough Granular computing model generates more 

number of highly structured motif patterns.   

Keywords-Protein Sequence Motifs, DBI, HSSP-BLOSUM62, Granular Computing, K-Means, Adaptive Fuzzy 

C-Means, Rough K-Means. 

I. INTRODUCTION  

The relationship between protein structure and its sequence is one of the most vital roles of current 
bioinformatics research. The term biological sequence motifs obtained from functionally conserved sequence 
regions may be used to predict any subsequent reoccurrence of structural or functional areas on other proteins. 
These functional and structural areas may include enzyme-binding sites, DNA or RNA binding sites, prosthetic 
group attachment sites, or regions involved in binding other small molecules. 

PROSITE [1], PRINTS [2], and BLOCKS [3] are three popular databases for sequence motifs. There are 
some commonly used softwares for protein sequence motif discover including MEME [16], Gibbs Sampling [15, 
17], Block Maker [25] and some of the latest algorithms include MITRA [14], and Gemoda [26].  Several protein 
sequences are required to be input by the user while using these tools. Since the size of input dataset is limited 
and discovered motifs are based on these input sequences, the obtained information from above methods may 
carry little information about conserved sequence regions, which transcend protein families.   

In this research, protein sequences are converted into segments using sliding window concepts and patterns 
are extracted from the selected segments. These sliding sequence segments are separated into different groups 
with granular computing models that utilized Fuzzy C-Means, Adaptive Fuzzy C-Means and Rough K-Means 
clustering algorithms to divide the whole data space into several smaller subsets and then apply K-Means and 
Rough K-Means algorithm to each subset to discover relevant information. Finally, we merge the information 
generated by all granules and obtain the final sequence motif information. Three evaluation methods are applied 
in this study such as structural similarity, DBI measure, and HSSP-BLOSUM62 evaluation method. The novelty 
of the study is applying Rough K-Means to have the granules which will include more segments. 

The rest of the paper is organized as follows. Section 2 presents related work in this area of research. In 
section 3, the description of granular computing techniques and clustering algorithms are explained. Experimental 
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Figure 1. Sketch of FGM using K-Means Computing Model            Figure 2. Sketch of FGM using Rough K-Means Computing Model 

setup is explained in section 4. In section 5, experimental results are explained. Section 6 concludes the paper 
with directions for further enhancement. 

II.  RELATED WORK 

K-Means clustering algorithm with random initial centroids is utilized by Han et al. [7] to find recurring 
protein sequence motifs across the boundaries of a protein family. To overcome the inherent problem of K-Means 
clustering algorithm, Wei et al. proposed an improved K-Means clustering algorithm to obtain initial centroid 
locations more wisely [6,12] and the results published by Wei et al. have been improved in their experiment. Fast 
computation is always one of the advantages for K-Means, other clustering methods with higher time and space 
costs may not be suitable for this task. 

 In order to overcome the high computational cost caused by a huge input dataset, Bernard Chen et al. 
proposed a granular computing model work called FIK model [11, 12] which utilizes a Fuzzy C-Means clustering 
algorithm to divide the whole data space into several smaller subsets and then applies a standard improved K-
Means algorithm to each subset to discover relevant information.  In FGK model [11, 12] Bernard Chen et al. 
develop a new greedy K-Means algorithm to further improve secondary structural similarity sequence motifs. In 
this paper, our goal is to produce more clusters with good structural similarity. 

III. GRANULAR COMPUTING TECHNIQUES 

A. Fuzzy Granular Model  

This model works by using Fuzzy C-Means (FCM) for building a set of information granules and then 
applying K-Means and Rough K-Means clustering algorithms to obtain the final information. The FGM process 
is given in Fig. 1 and Fig. 2.  

 

1) Fuzzy C-Means 

Fuzzy C-Means (FCM) is a clustering algorithm which allows one segment of data is belongs to one or more 
clusters. This algorithm is to minimize the following objective function [12]. 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚

𝐶

𝑗=1

𝑁

𝑖=1

 ‖𝑥𝑖 −  𝑐𝑗‖
2

 , 1 ≤ 𝑚 <  ∞                                                                                                     (1) 

where m, the fuzzification factor, is any real number greater than 1, uij is the degree of membership of xi in 
the cluster j, x is the ith of d-dimensional measured data, c is the d dimension center of the cluster, and ‖*‖ is any 
norm expressing the similarity between any measured data and the center.  Fuzzy partitioning is carried out 
through an iterative optimization of the objective function shown above, with the update of membership u ij   and 
the cluster centers cj by: 

𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚 . 𝑥𝑖
𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

                                                                                                                                                      (2) 
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Figure 3. Sketch of AFGM using K-Means Computing Model     Figure 4. Sketch of AFGM using Rough K-Means Computing Model 

Where 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖− 𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2

𝑚−1𝑐
𝑘=1

                                                                                                                                        (3) 

This iteration will stop when maxij {|𝑈(𝑘+1) − 𝑈(𝑘)|} <  𝛿 where δ is a termination criterion between 0 and 1, 

whereas k is the iteration step. This procedure converges to a local minimum or a saddle point of Jm.  

The Fuzzy C-Means Clustering algorithm is described as following: 

_____________________________________________________ 

1. Initialize membership function matrix U = [uij], and U (0). 

2. at k step: Calculate the centroid point by the equation (2) 

3. Update 𝑈(𝑘)and 𝑈(𝑘+1)by using equation (3). 

4. if |𝑈(𝑘+1) − 𝑈𝑘| < Ɛ then stop; otherwise return to step 2. 

_____________________________________________________ 

B. Adaptive Fuzzy Granular Model 

A set of information granules is built using the Adaptive Fuzzy Granular Model (AFGM) and then applying 
K-Means and Rough K-Means Clustering algorithms to obtain the final information. The AFGM process is 
given below in Fig. 3 and Fig. 4 [23]. 

 

1) Adaptive Fuzzy C-Means 

Many of the behavioural problems with standard Fuzzy C-Means algorithm are eliminated when we relax 
probabilistic constraint imposed on membership function. Further Krishnapuram R and Keller JM [19, 23] 
modified the approach for calculating membership values. Equation (4) shows membership calculation. 

  ∑ ∑ 𝜇𝑗 (𝑥𝑖)=𝑛
𝑛
𝑖=1

𝑘
𝑗=1                                                                                                                                                          (4) 

Here,  

 𝜇j (xi)  is the membership of xi in jth  cluster 

 k is the specified number of clusters 

 n is the number of data points 

In Adaptive Fuzzy C-Means (AFCM), the total membership quantifiers for all sample points are equal to n. 
This flexible approach leads to clustering optimization problem, provides a way to improve cluster robustness. It 
is in this sense the algorithm is adaptive; that is membership is based on sample size rather than fixed to upper 
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Figure 5. Sketch of AFGM using K-Means Computing Model      Figure 6. Sketch of AFGM using Rough K-Means Computing Model   

limit  as one in Fuzzy C-Means clustering. The membership values in this method are calculated using    
Equation (5). 

𝜇𝑗(𝑥𝑖) =
𝑛 (

1

𝑑𝑗𝑖
)

1

𝑚−1

∑ ∑ (
1

𝑑𝓀𝑧
)

1

𝑚−1𝑛
𝑧=1

𝑝
𝓀=1

                                                                                                                             (5) 

The Adaptive fuzzy clustering algorithm is efficient in handling data with outlier points. It gives very low 
membership values for outliers since the sum of distances of points in all the clusters involves in membership 
calculation. 

C. Rough Granular Model 

    A set of information granules is built using the Rough Granular Model (RGM) and then applying K-Means 
and Rough K-Means Clustering algorithms to obtain the final information. The RGM process is given below 
in Fig. 5 and Fig. 6 [23]. 

 

 

D. Rough Clustering 

        In rough clustering each cluster has two approximations, a lower and an upper approximation. The lower 
approximation is a subset of the upper approximation. The members of the lower approximation belong 
certainly to the cluster; therefore they cannot belong to any other cluster. The data objects in an upper 
approximation may belong to the cluster. Since their membership is uncertain they must be a member of an 
upper approximation of at least another cluster. 

1) Rough Properties of the Cluster Algorithm 
Property 1: a data object can be a member of one     lower approximation at most. 

Property 2: a data object that is a member of the lower approximation of a cluster is also member of the upper 
approximation of the same cluster. 

Property 3: a data object that does not belong to any lower approximation is member of at least two upper 
approximations [24]. 

The Rough K-Means algorithm provides a rough set theoretic flavour to the conventional K-Means algorithm to 
deal with uncertainty involved in cluster analysis. The Rough K-Means algorithm [8, 9] described as follows: 

__________________________________________________________________________________________ 

1. Select initial clusters of n objects into K clusters. 

2. Assign each object to the Lower bound (L(x)) or upper bound (U(x)) of cluster/ clusters respectively as: For 
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each object v, let d (v,xi) be the distance  between itself and the centroid of  cluster xi. The difference 
between d (v,xi) / d(v,xj), 1≤ i, j ≤ k is used to determine the membership of v as follows:  

• If d (v,xi) / d(v,xj) ≤ thershold, then v ∈U(xi) & v ∈ U(xj). Furthermore, v will not be a part of any 
lower bound. 

• Otherwise, v∈L(xi),such that d(v,xi) is the minimum for 1≤ i ≤ k. In addition, v∈U(xi). 

3. For each cluster xi re-compute center according to the following equations the weighted combination of the  
data points in its lower_bound and upper_bound. 

 

where 1≤ j ≤ k. The parameters wlower and wupper correspond to the relative importance of lower and upper 
bounds. If convergence criterion is met, i.e. cluster centers are same to those in previous iteration, then stop; else 
go to step2. 

__________________________________________________________________________________________ 

E. K-Means Clustering Algorithm 

      Among all clustering algorithms, K-Means clustering algorithm has the advantages of easy 
interpretation and implementation, high scalability, and low computation complexity.  The K-Means 
clustering take the user input parameter K, and partitions a set of n objects into K clusters then 
iteratively updates the centers until no reassignment of patterns to new cluster centers occurs. In 
every step, each sample is allocated to its closest cluster center and cluster centers are reevaluated 
based on current cluster memberships [20]. 

IV. EXPERIMENTAL SETUP 

A. Data Set 

      The dataset obtained from Protein Sequence Culling Server (PISCES) includes 4946 protein sequences [10]. 
In this work, we have considered 3000 protein sequences to extract sequence motifs that transcend in protein 
sequences. The threshold for percentage identity cut-off is set as less than or equal to 25%, resolution cut-off is 
0.0 to 2.2, R-factor cut-off is 1.0 and length of each sequence varies from 40 to 10,000. Homology Derived 
Secondary Structure of Proteins (HSSP) frequency profiles is used to represent each segment [4, 5]. The sliding 
windows with ten successive residues are generated from protein sequences. Each window represents one 
sequence segment of ten continuous positions. Around 6, 60,364 sequence segments are generated by sliding 
window method, from 3000 protein sequences. Each sequence segment is represented by 10 X 20 matrix, where 
ten rows represent each position of sliding window and 20 columns represent 20 amino acids. Fig. 7 shows 
sliding window technique. 

Thus by applying the sliding window technique we can generate n number of sequence segments (10*20 
matrices). 

B. Structural similarity measure 

A cluster’s average structure is calculated using the following formula:      

    
∑ max(𝑃𝑖,𝐻,𝑃𝑖,𝐸,𝑃𝑖,𝐶)𝑊𝑆

𝑖=1

𝑊𝑆
                                                                                                                                        (6) 

 
Where ws is the window size and (𝑃𝑖,𝐻)shows the frequency of occurrence of helix among the segments for 

the cluster in position i.  (𝑃𝑖,𝐸) and  (𝑃𝑖,𝐶)  are defined in a similar way.  If the structural homology for a cluster 

exceeds 70%, the cluster can be considered structurally identical [12]. If the strucural homology for the cluster 
exceeds 60% and is below 70%, the cluster can be considered weakly structurally homologous. 
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Figure. 7. Sliding Window techniques with a window size of 10 applied on 1D0D HSSP file. 

 

     Dictionary of Secondary Structure Proteins (DSSP) assigns secondary structure to eight different classes 
[21]. These eight structural classes can be reduced to three using reduction method as follows: H, G and I to H 
(Helices); B and E to E (Sheets); all others to C (Coils) [22]. 

 

C. Distance Measure 

      The city block metric is more suitable for this field of study since it will consider every position of the 
frequency profile equally. The city block metric is used for calculating the difference between a sequence 
segment and the centroid of a given sequence cluster. Han and Baker also chose the city block metric because of 
complications associated with the use of Euclidean metric for clustering algorithms [7]. The following formula 
is used to calculate the distance between two sequence segments: 

     Distance = ∑ ∑ |𝐹𝑘(𝑖, 𝑗) − 𝐹𝑐(𝑖, 𝑗)|𝑁
𝑗=1

𝐿
𝑖=1         (7) 

where L is the window size and N is 20 which represent 20 different amino acids. Fk (i j) is the value of the 
matrix at row i and column j used to represent the sequence segment. Fc (i,j) is the value of the matrix at row i 
and column j used to represent the centroid of a give sequence cluster. 

D. Davis-Bouldin Index (DBI) Measure 

      The DBI measure [11] is a function of the inter-cluster and intra-cluster distance. A good cluster result 
should reflect a relatively large inter-cluster distance and a relatively small intra-cluster distance. The DBI 
measure combines both distance information into one function, which is defined as follows: 

       𝐷𝐵𝐼 =
1

𝑘
 ∑ max

𝑝≠𝑞
{

𝑑𝑖𝑛𝑡𝑟𝑎 (𝐶𝑝)+𝑑𝑖𝑛𝑡𝑟𝑎 (𝐶𝑞)

𝑑𝑖𝑛𝑡𝑒𝑟(𝐶𝑝,𝐶𝑞)
}𝑘

𝑝=1  , 𝑤ℎ𝑒𝑟𝑒                                             (8) 

       𝑑𝑖𝑛𝑡𝑟𝑎 (𝐶𝑝) =
∑ ‖𝑔𝑖−𝑔𝑝𝑐‖

𝑛𝑝
𝑖=1

𝑛𝑝
  𝑎𝑛𝑑 

       𝑑𝑖𝑛𝑡𝑒𝑟(𝐶𝑝, 𝐶𝑞) = ‖𝑔𝑝𝑐 − 𝑔𝑞𝑐‖ 
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Figure 8. BLOSUM62 Matrix. 

 

K is the total number of clusters, 𝑑𝑖𝑛𝑡𝑟𝑎 and 𝑑𝑖𝑛𝑡𝑒𝑟  denote the intra-cluster and inter-cluster distances 
respectively. np is the number of members in the cluster Cp. The intra-cluster distance defined as the average of 
all pair wise distances between the members in cluster P and cluster P’s centroid gpc. The inter-cluster distance 
of two clusters is computed by the distance between two clusters’ centroids. The lower DBI value indicates the 
high quality of the cluster result. 

E. HSSP-BLOSUM62 Measure 

BLOSUM62 [5] (Fig. 8) is a scoring matrix based on known alignments of diverse Sequences. 

 

By using this matrix, we may access the consistency of the amino acids appearing in the same position of the 
motif information generated by our method. Because different amino acids appearing in the same position 
should be close to each other, the corresponding value in the BLOSUM62 matrix will give a positive value. 
Hence, the measure is defined as the following [13]. 

 

 

 

 

 

 

 

 

F. Parameter Setup 

For FCM granular fuzzification factor is been set to 1.15 and number of clusters is equal to ten. In order to 
separate information granules from FCM results, the membership threshold is set to 18% [23]. The function that 
decides how many numbers of clusters should be in each information granule is given below: 

       Ck= 
𝑛𝑘

∑ 𝑛𝑖
𝑚
𝑖=1

× 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠          (9) 

where Ck denotes the number of clusters assigned to information granule k. nk is the number of members 
belonging to information granule k. m is the number of clusters in Fuzzy C-Means. In this technique we are able 
to indentify 900 clusters. 

For Adaptive Fuzzy C-Means, fuzzification factor is considered as 1.15 and membership threshold is set to 
13% [23]. Number of clusters in each granule is been decided by the function given below: 

      Ck= 
𝑛𝑘

∑ 𝑛𝑖
𝑚
𝑖=1

× 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠        (10) 

    where Ck denotes the number of clusters assigned to information granule k. nk is the number of members 
belonging to information granule k. m is the number of clusters in Adaptive Fuzzy C-Means. In this technique 
we are able to indentify 901 clusters. 
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     For Rough K-Means, epsilon value is considered as 1.001 and number of clusters in each granule is been 
decided by the function given below: 

       Ck= 
𝑛𝑘

∑ 𝑛𝑖
𝑚
𝑖=1

× 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠                                                                                                    (11) 

where Ck denotes the number of clusters assigned to information granule k. nk is the number of members 
belonging to information granule k. m is the number of clusters in Rough K-Means. In this technique we are 
able to indentify 900 clusters. 

V. EXPERIMENTAL RESULTS 

TABLE I  SUMMARY OF THE RESULTS OBTAINED BY THE FCM 

 

 

 

 

 

 

 

 

 

 

 

 

Table I is the summary of the results from FCM granular. Although the total segment increased from 660364 to 
805869, we achieved the goal of reduced data size is to deal with one information granule at a time . 

TABLE II  SUMMARY OF THE RESULTS OBTAINED BY THE AFCM 

 

 

 

 

 

 

 

 

 

 

Table II is the summary of the results from AFCM granular.  Although the total number of members increased 
from 562745 to 721390, we only deal with one information granule at a time. Therefore, we achieved the goal of 
reduced space-complexity. 

 

 

 

 

Granules Number of 

Members 

 

 

Number 

of 

Clusters 

 

 

Data 

Size (in 

MB) 

Granule 0 76090 85 56.1 

Granule 1 39915 45 29.7 

Granule 2 60151 45 44.22 

Granule 3 265960 297 196.02 

Granule 4 120024 134 88.44 

Granule 5 23348 26 17.16 

Granule 6 9612 11 7.26 

Granule 7 151631 169 111.54 

Granule 8 45472 51 33.66 

Granule 9 13666 15 9.9 

Total 
 

Original 

Data Set 

805869 
 

    660364 

900 

 

900 

594 

 

465 

Granules Number of Members Number of Clusters Data Size (in MB) 

Granule 0 20675 28 18.48 

Granule 1 35324 48 31.68 

Granule 2 215674 292 192.72 

Granule 3 62388 85 56.1 

Granule 4 4376 6 3.96 

Granule 5 125769 170 112.2 

Granule 6 2409 3 1.98 

Granule 7 65409 89 58.74 

Granule 8 2824 4 2.64 

Granule 9 129761 176 116.16 

Total 
 

Original Data Set 

664609 
 

660364900 

901 

900 

595 

465 
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Figure 9. Comparison of percentage of Structural Similarity Values 

 

 

TABLE III  SUMMARY OF THE RESULTS OBTAINED BY THE RKM 

 

 

 

 

 

 

 

 

 

 

Table III is the summary of the results from RKM granular. The total number of members is exactly same as 
original data set but identifies more number of hidden highly structure motif patterns. 

 

     Fig. 9 has been interpreted from table IV. From the Fig. 9 we state that the number of strong and weak 
clusters have been increased in Granular RKM with Rough K-Means technique as well as percentage of 
sequence segments have also been increased considerably. 

 

 

 

 

 

 

 

 

Granules Number of Members 

 

Number 

of 

Clusters 

Data Size (in MB) 

Granule 0 122260 167 110.49 

Granule 1 11112 15 9.92 

Granule 2 6794 9 5.95 

Granule 3 7552 10     6.62 

Granule 4 167789 229 151.50 

Granule 5 3369 5     3.31 

Granule 6 44961 61   40.36 

Granule 7 143504 196 129.67 

Granule 8 37645 51 33.74 

Granule 9 115378 157 103.87 

Total 
 

Original Data 

Set 

660364 
 

660364 

900 

900 

              595(Round off) 

465 
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Figure 10. Comparison of Structural Similarity Values 

 

 

TABLE IV  COMPARISON RESULTS OF DIFFERENT ALGORITHMS 

 

 

K-

Means 

Rough 

K-

Means 

Granular 

FCM with  

K-Means 

Granular 

FCM with 

Rough K-

Means 

Granular 

AFCM with  

K-Means 

Granular 

AFCM with 

Rough K-

Means 

Granular 

RKM with 

K-Means 

Granular 

RKM with 

Rough K-

Means 

No. of Clusters 

>70% Structural 

Similarity 

100 103 101 195 164 228 196 231 

No. of Clusters > 

60% and < 70% 

Structural 

Similarity 

184 193 188 241 260 304 320 332 

% of Sequence 

Segments > 70% 11.11 11.44 11.22 21.67 18.20 25.31 21.78 25.67 

% of Sequence 

Segments > 60% 

and < 70% 
20.44 21.44 20.89 26.78 28.86 33.74 35.56 36.89 

DBI Measure 6.2409 6.1985 4.2163 3.7339 3.9268 3.6186 3.8721 3.6005 

Avg. HSSP-

BLOSUM62 
0.5268 0.6010 0.6125 0.6617 0.7325 0.7901 0.8125 0.8227 

 

 

      Table IV shows the comparative results obtained from different algorithms and granularization methods. 
From above table IV, we can infer that RKM with Rough K-Means method able to identify more number of 
hidden motif patterns. 

 

Fig. 10 shows percentage of structural similarity belonging to clusters obtained from different methods and 

different granular computing techniques. Fig. 10 has been interpreted from table IV. From the Fig. 10, we state 

that the number of strong and weak clusters have been increased in RKM with Rough K-Means. 
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Figure 11. Comparison of DBI and BLOSUM62 measure values 

                              

Fig. 11 shows DBI and HSSP-BLOSUM62 measure values obtained from different methods and different 

granular computing techniques. 

Low DBI measure value indicates the improvement of the quality of clusters RKM with Rough K-Means 
technique. High HSSP-BLOSUM62 value shows that RKM with Rough K-Means indicates that motif patterns 
are more significant. 

A. Sequence Motifs 

      Four different motif patterns obtained from RKM granular with Rough K-Means process are shown in motif 
tables I to IV. The following format is used for representation of each sequence motif table. Instead of using 
existing format, in this paper protein logo representation has been used [18]. 

 

 

 

Motif Table I 

Sheets-Coils Motif 

Number of Sequence Segments:171 

Structural Similarity: 73.1 
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Motif Table II 

Helices Motif 

Number of Sequence Segments:258 

Structural Similarity: 72.91 

 

 

 

 

 

Motif Table III 

Helices-Coils-Sheets Motif 

Number of Sequence Segments:231 

Structural Similarity: 71.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above motif tables I-IV show the number of sequence segments belonging to this motif, percentage 
of structural similarity. The graph demonstrates the type of amino acid frequently appearing in the given 
position by amino acid logo.  It only shows the amino acid appearing with a frequency higher than 8%.  The 

Motif Table IV 

Coils-Helices Motif 

Number of Sequence Segments:102 

Structural Similarity: 72.06 
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height of symbols within the stack indicates the relative frequency of each amino or nucleic acid at that 
position. 

The x-axis label indicates the representative secondary structure (S), the hydrophobicity value (Hyd.) 
of the position.  The hydrophobicity value is calculated from the summation of the frequencies of 
occurrence of Leu, Pro, Met, Trp, Ala, Val, Phe, and Ile. 

VI. CONCLUSION 

      In this study, the granular computing models such as FGM and AFGM have studied and implemented. The 
RGM has been proposed in order to approximate some of the segments so as to include more similar segments 
in each granule. Further, the granules obtained in each of the above methods are clustered using K-Means and 
Rough K-Means. The highly structured clusters are used to construct the motif patterns. The main objective of 
generating more motif patterns has been achieved with the proposed rough granular approach and Rough K-
Means clustering.  It is believed that this granular strategy is a very useful and powerful for bioinformatics 
research involving an extremely large database. 
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